
Quantification of Software Changes
through Probabilistic Symbolic Execution

Antonio Filieri
University of Stuttgart

Stuttgart, Germany
filieri@informatik.uni-stuttgart.de

Corina S. Păsăreanu
Carnegie Mellon Silicon Valley, NASA Ames

Moffet Field, CA, USA
corina.s.pasareanu@nasa.gov

Guowei Yang
Texas State University
San Marcos, TX, USA

gyang@txstate.edu

Abstract—Characterizing software changes is fundamental for
software maintenance. However existing techniques are imprecise
leading to unnecessary maintenance efforts. We introduce a novel
approach that computes a precise numeric characterization of
program changes, which quantifies the likelihood of reaching
target program events (e.g., assert violations or successful termi-
nation) and how that evolves with each program update, together
with the percentage of inputs impacted by the change.

This precise characterization leads to a natural ranking of
different program changes based on their probability of execution
and their impact on target events. The approach is based on model
counting over the constraints collected with a symbolic execution
of the program, and exploits the similarity between program
versions to reduce cost and improve the quality of analysis results.

We implemented our approach in the Symbolic PathFinder
tool and illustrate it on several Java case studies, including the
evaluation of different program repairs, mutants used in testing,
or incremental analysis after a change.

I. Introduction
Characterizing software changes is a fundamental compo-

nent of software maintenance and differential analysis. Despite
being widely used and computationally efficient, techniques
that characterize syntactic program changes lack an insight on
the changed program behaviors, which can possibly lead to
unnecessary maintenance efforts. Recent promising techniques
use program analysis to produce a behavioral characteriza-
tion of program changes, see e.g., [1–4]. Nonetheless, such
qualitative assessment provides only true-false answers, giving
limited guidance on “how far” two different versions are
from one another. We argue that a complementary quantitative
representation for software changes is needed, particularly for
programs required to operate under uncertain usage profiles,
where the goal of maintenance is to improve the average
quality of the program instead of its worst-case performance.

In this work, we propose to compute a precise numeric
characterization of a program change by quantifying the like-
lihood of reaching program events of interest (e.g., success-
ful termination, assertion violations, or the execution of a
statement or a branch) and how that evolves in time, with
each program version. Furthermore, our approach quantifies
the percentage of inputs that are affected by each change.
Such precise characterization of behavioral changes can be
used to rank different program versions based on the execution
probability of the changes and their impact on the probability
of satisfying or failing desirable properties (considering also
an uncertain usage profile, whenever available).

With this new quantitative approach we are able to state
not only that the program has changed with a logical delta,
as in the previous qualitative approaches, but we can also
compute that delta affects say 30% of the program inputs,
giving a clear, measurable indication for the effort necessary
to re-test the program modifications or the relative risk due to
the introduction of an undetected bug with the last change.

Furthermore, after fixing a bug, existing qualitative or
testing-based techniques can only assess whether the new
version is free of errors or not, which may be too restrictive
for most realistic applications. Instead, with our approach we
can quantify the probability of reaching an error in the old
and new versions, expecting it to decrease with each new
bug fix. In yet another scenario, consider the case of multiple
candidate repairs for a given bug: our technique can be used
to automatically rank them according to their probability of
execution or the overall probability of failure.

The approach extends probabilistic symbolic execution [5,
6] to compute the symbolic constraints that characterize
program paths in different program versions. Solution space
quantification techniques [7, 8] over the collected constraints
are used to precisely quantify the percentage of inputs leading
to the occurrence of a target event that are affected by a
change (approximate quantification with probabilistic precision
guarantees has also been explored to cope with larger or
nondeterministic programs [9, 10]). Furthermore, our approach
exploits the fact that program versions are largely similar to
reduce cost and improve the precision of analysis by storing
and reusing partial analysis results from previous versions [11].

Besides sketching the potential applications we envision
for our approach, we have implemented it in the Symbolic
PathFinder tool [12] and performed an exploratory study on
three possible applications: ranking of program repairs, incre-
mental reliability analysis, and regression analysis of proba-
bilistic programs. The preliminary results show a promising
application scope for our technique.

II. Background on Symbolic Execution
Symbolic execution is program analysis technique that

executes programs on symbolic rather than concrete inputs,
and it computes the program effects as functions in terms
of the symbolic inputs [13]. The behavior of a program P
is determined by the values of its inputs and can be described
by means of a symbolic execution tree where tree nodes are
program states and tree edges are the program transitions as
determined by the symbolic execution of program instructions.



1 void test(int x, int y) {
2 if(x>=0)
3 − if(y>0)
3 + if(y>=0)
4 System.out.println("1");
5 else{
6 System.out.println("2");
7 assert x>y;
8 }

9 else
10 if(y>0)
11 System.out.println("3");
12 else
13 System.out.println("4");
14 }

Fig. 1. Example code change; the statement “if(y>0)” in the original program
is changed to “if(y>=0)” in the new version.

The state s of a program is defined by the tuple (IP,V,PC)
where IP represents the next instruction to be executed, V is a
mapping from each program variable v to its symbolic value
(i.e., a symbolic expression in terms of the symbolic inputs),
and PC is a path condition. PC is a conjunction of constraints
over the symbolic inputs that characterizes exactly those inputs
that follow the path from the program’s initial state to state s.

The current state s and the next instruction IP define the
set of transitions from s. Without going into the details of
every Java instruction, we informally define these transitions
depending on the type of instruction pointed to by IP.

Assignment. The execution of an assignment to variable
v∈V leads to a new state where IP is incremented to point
to the next instruction and V is updated to map v to its new
symbolic value. PC does not change.

Branch. The execution of an if-then-else instruction on
condition c introduces two new transitions. The first leads
to a state s1 where IP1 points to the first instruction of the
then block and the path condition is updated to PC1=PC∧c.
The second leads to a state s2 where IP2 points to the first
instruction of the else block and the path condition is updated
to PC2=PC∧¬c. If the path condition associated with a branch
is not satisfiable, the new transition and state are not added to
the tree.

Loop. A while loop is unrolled until its condition evaluates
to false or a pre-specified exploration depth limit is reached.
Analogous transformations are applied to other loop constructs.

The initial state of a program is s0=(IP0,V0,PC0), where IP0
points to the first instruction of the main method, V0 maps the
arguments of main (if any) to fresh symbolic values, and PC0=
true. A program may also have one or more terminal states
that represent conditions such as the successful termination of
the program or an uncaught exception that aborts the program
execution abruptly.

Our approach can be customized for any symbolic execu-
tion tool. We focus here on Symbolic PathFinder (SPF) [12]
that analyzes Java bytecode programs.

III. Example
We illustrate our approach on the example in Figure 1. The

program has two integer inputs: x and y (both ranging over
-10 .. 9) and contains an assert violation (for the assertion at
line 7). In the example, the statement if(y>0) (in red) in the
original version of a program is changed to if(y>=0) (in blue)
in a new, changed version of the program.

Figure 2 shows the symbolic execution tree of the original
program, annotated with counters and probabilistic information

computed by our quantitative analysis. The states in the tree
contain information about the corresponding program state-
ment, the number of inputs that reach that state, the percentage
of inputs that reach that state given its parent has been reached
and the percentage of inputs that follow the corresponding path
in the program.

For example, the state S 3, corresponding to the assert
violation, will be reached by 110 input values out of the
400 in the domain, which represents 55% of the inputs that
already reached the parent of the state in the tree. Further this
represents 27.5% of the inputs that follow the program path
leading from the tree root to the assert violation.

After the change described in Figure 1 is performed we
obtain the annotated symbolic execution tree in Figure 3. Our
tool identifies the portion of the tree that has been impacted
by the change (in red) and re-computes the quantitative figures
in an efficient way, only for the impacted portion of the tree
(the values for the non-impacted nodes stay the same). In the
second version, the assertion is still violated. However the
number of inputs that reach the error is now 100, representing
50% of the inputs that reached the parent node, and 25%
of the total number of inputs that follow the path leading
to the error. Thus the percentage of inputs that lead to the
error has decreased from 27.5% to 25%. Therefore, even if
the change did not actually fix the bug, we can rank the two
versions of the program based on the percentage of inputs that
lead to the error, giving also a measure of the “likelihood”
of executing the error (assuming all the inputs are equally
likely). Furthermore, we can quantify the percentage of the
inputs impacted by the change (e.g., 50% of the inputs lead
from the root to the impacted node depicted with red in the
figure), giving a measurable indication of the impact of the
change on the behavior of the analyzed program. Finally, we
can identify the branches that have been affected by the change
by looking at the conditional probability; in this case the
conditional probability for the branch in S 1 changed, meaning
the evaluated condition is statistically dependent on the change,
while, for example, the one in S 2, though predicate on y, is
not because the change fall in a different scope.

Both the quantitative and the impact analysis are performed
as described in the next section.

IV. The Approach
A. Probabilistic Analysis

We build upon previous work [6] where we defined a
symbolic execution framework for computing the probability
of successful termination (and alternatively the probability of
failure) for a Java software component placed in a probabilis-
tically uncertain environment. A failure can be any reachable
error, such as a failed assertion or an uncaught exception, or
reaching a specified unsafe state. For simplicity, we assume the
satisfaction of target program properties to be characterized by
the occurrence of a target event, but our work generalizes to
bounded LTL properties [14].

To deal with loops, we run SPF using bounded symbolic
execution, i.e., a bound is set for the exploration depths. The
result of symbolic execution is then a finite set of paths, each
with a path condition. Some of these paths lead to failure,
some to success (termination without failure) and some lead
to neither success nor failure (they were interrupted because
of the bounded exploration) – the latter are called grey paths.



S0

S1 S2

S3 S4 S5 S6

root
[400, 100%, 100%]

Example.test(II)V:1,1
[200, 50%, 50%]

Example.test(II)V:1,0
[200, 50%, 50%]

Example.test(II)V:5,0
[90, 45%, 22.5%]

Example.test(II)V:5,1
[110, 55%, 27.5%]

Example.test(II)V:47,0
[90, 45%, 22.5%]

Example.test(II)V:47,1
[110, 55%, 27.5%]

Fig. 2. Symbolic execution tree for the original program

S0

S1 S2

S3 S4 S5 S6

root
[400, 100%, 100%]

Example.test(II)V:1,1
[200, 50%, 50%]

Example.test(II)V:1,0
[200, 50%, 50%]

Example.test(II)V:5,0
[100, 50%, 25%]

Example.test(II)V:5,1
[100, 50%, 25%]

Example.test(II)V:47,0
[90, 45%, 22.5%]

Example.test(II)V:47,1
[110, 55%, 27.5%]

Fig. 3. Symbolic execution tree for the changed program

The path conditions produced by SPF consequently form
three sets: PCs={PCs

1,PCs
2,...,PCs

m}, PC f ={PC f
1 ,PC f

2 ,...,PC f
p}

and PCg={PCg
1,PCg

2,...,PCg
q}, according to whether they lead

to success, failure, or were truncated. Note that the path
conditions are disjoint and cover the whole input domain. In
other words, the three sets form a complete partition of the
input domain [12, 13].

In its general form, the analysis we propose in this paper
can take into account a probabilistic usage profile, i.e., a proba-
bilistic distribution over the possible input variables resembling
the expected user behavior [6]. In case no specific usage profile
is provided, each input is considered equally likely. For the
sake of simplicity, in this section we will focus on probabilistic
analysis when no usage profile is available. To consider a usage
profile, the equations in this section can be straightforwardly
extended as in [6].

Given the output of SPF, the probability of success is
defined as the probability of executing program P with an
input satisfying any of the successful path conditions (recall
the path conditions are disjoint):

Prs(P)=
∑

i

Pr(PCs
i ) (1)

The failure probability Pr f (P) and “grey” probability Prg(P)
have analogous definitions; it is straightforward to prove that
Prs(P)+Pr f (P)+Prg(P)=1. Prg(P) can be used to quantify the
impact of the execution bound on the quality of the analysis
(1−Prg(P)).

In this paper we focus on sequential programs with in-
teger inputs. In other work we provide treatment of multi-
threading [9], input data structures [6], and floating-point
inputs [8]. We also proposed the systematic partial exploration
of symbolic paths with statistical techniques in [10] to trade
off accuracy of the analysis for scalability.

Quantification Procedure. We compute the probabilities
of path conditions based on the quantification of their solution
space (e.g., [5–7]). Since we are focusing on linear integer
constraints, we can use LattE [7] to count the models satisfying
them, but our work generalizes straightforwardly to other tools
such as QCoral [8] (for arbitrary floating point constraints) and
Korat [15] (for heap data structures; see [6] for details).

Given a finite integer domain D, model counting allows
us to compute the number of elements of D that satisfy a
given constraint c; we denote this number by ](c) (a finite
non-negative integer). By definition [16], Pr(c) is ](c)/](D)

(where ](D) is the size of the domain implicitly assumed to
be greater than zero).

The success probability (or failure or grey probability) can
then be computed using model counting as follows:

Prs(P)=
∑

i

Pr(PCs
i )=
∑

i](PCs
i )

](D)
(2)

where we implicitly assumed the domain D to be non-empty.
The actual computation of ](·) is optimized by a divide and
conquer strategy and caching mechanism for intermediate
results which allows for a significant reuse, as described in [6].

Conditional probability for a branch. Consider a branch in
the symbolic execution tree that can be reached with a certain
path condition P̄C and splits the control flow evaluating the
condition b. The probability of satisfying b, given that the
execution reached the conditional statement by satisfying P̄C,
can be formalized by the conditional probability:

Pr(b|P̄C)=
Pr(b∧P̄C
Pr(P̄C)

=
](b∧P̄C)
](P̄C)

(3)

Conditional probabilities can be used to identify the statis-
tical dependence between a change in the program and the
condition evaluate at a branch. If there is no dependency, the
conditional probability of the branch remains the same, i.e., the
contribution of the branch to the final success probability did
not change since its condition is not affected by the change.

B. Incremental Analysis
The probabilistic symbolic analysis described above gives

us a way for computing the probability of reaching target
events (e.g., Prs(P),Pr f (P)) and the probability of executing
different branches or statements. Computing these quantities,
and then differencing them, for multiple program versions,
gives us the precise numeric characterization of program
changes that we are seeking. However, re-applying the proba-
bilistic symbolic analysis to programs as they evolve may be
impractical. We therefore aim to compute program differences
that are utilized to make symbolic execution more efficient
on the subsequent program version. The results generated by
incremental analysis should be sound and complete, i.e., they
must be the same as the results generated by regular symbolic
analysis.

We build on previous work on Memoized Symbolic Execu-
tion (Memoise) [11], which leverages the similarities between
successive problem instances that are analyzed by symbolic
execution to reduce the total analysis cost by maintaining and



updating the computations involved in a symbolic execution
run. It reduces both the number of paths to explore by pruning
the path exploration as well as the cost of constraint solving
by re-using previously computed constraint solving results.
Caching mechanisms are also used for the partial results of
model counting procedures (adapting what described in [6]).

Memoise uses a trie [17, 18]—an efficient tree-based data
structure—for a compact representation of the paths visited
during a symbolic execution run. An initial run of Memoise
performs standard symbolic execution as well as builds the trie
on-the-fly and saves it on the disk for future re-use. Whenever
a conditional instruction is symbolically executed a trie node
is created. Specifically, in our approach, we store in each
trie node bookkeeping information that maps each trie node
to the corresponding condition in the code, i.e., method and
the instruction offset of the symbolic conditional, the choice
taken by the execution, as well as quantification information
computed from probabilistic analysis. Figure 2 shows the trie
for the original version of our running example.

Memoise enables efficient incremental analysis guided by
the trie by only allowing the paths impacted by the change to
be re-executed. Constraint solving is turned off for previously
explored paths and the search is guided by the choices recorded
in the trie. Moreover, the search is pruned for the paths that
are deemed to be no longer of interest for the analysis.

A change impact analysis is used to identify the impacted
trie nodes, which represent roots of sub-trees potentially
changed by the execution of the change. Thus, only paths
leading to the impacted trie nodes are selected be re-executed,
and constraint solving is turned off for the portion of the path
up to the impacted node. The control flow graph (CFG) of
the program together with the trie are used to calculate the
impacted trie nodes, and hence to guide symbolic execution to
only execute paths with impacted trie nodes. Given a changed
node in the CFG, we use backward reachability analysis to
find the first symbolic conditional branch on each path from
the changed node to the entry node in the CFG, and the trie
nodes corresponding to the branch(s) are impacted.

Memoise monitors the symbolic execution of the program
and whenever a conditional instruction is executed symbol-
ically, it makes the corresponding traversal in the trie. Fur-
thermore, Memoise turns off constraint solving for the portion
of the path remain the same during re-execution, i.e., that
corresponding to the path prefix leading to a impacted trie
node in the trie. When encountering nodes that can not lead
to any impacted trie nodes, the traversal backtracks and at
the same time requests the symbolic execution to backtrack as
well, thus “pruning” the search. When an impacted trie node is
encountered, constraint solving is turned on. The part of the trie
rooted at the impacted trie node is then built while new states
are explored, using traditional symbolic execution. Constraint
solving is turned off again when the traversal backtracks from
a impacted trie node.

For example, in our running example, the change is made
at line 3 of the program. Tracing the change towards the entry
of the program in the CFG, we can find that the true branch
of the symbolic conditional instruction at line 1 is the nearest
symbolic branch leading to the change. We map this to the trie,
and find the corresponding node S 1, which represents the first
choice, i.e., index 0; thus, S 1 is the impacted node. Therefore,
we select the trie path S 0→S 1 to guide the exploration; the

execution corresponding to the other trie paths can be pruned;
constraint solving is turned off for the execution corresponding
to the selected path; it is turned on when S 1 is encountered
to rebuild the part rooted at S 1. Figure 3 shows the updated
example trie after the code change.

C. Potential application
In this section we sketch some of the main applications we

envision for our technique. In the next section we will report
on some preliminary experience.
Test suite evaluation and optimization. Quantitative program
analysis naturally introduces the notions of domain coverage
and usage coverage for a test suite. The former quantifies the
fraction of the possible inputs actually covered by the test suite;
the latter the fraction of the usage which is represented by
the test suite, for a given usage profile. More metrics can be
defined for other purposes. This quantitative information can
be used to evaluate a test suite and to drive its improvement.
Evolutionary and search-based software optimization.
These approaches aim at automatically modifying a program in
order to improve its performance with respect to given metrics
or to repair it, making it fit to specified requirements. Most
techniques iteratively apply heuristics to generate variants of
the original program; if such variants outperform the original
one, they are used as basis for further improvement. The
evaluation of a variant is usually based on predefined test
suites, which may be partial or inadequate after the change.
Our approach can be used besides or alternatively to testing
to obtained global information useful not only to quantify the
fitting to each requirement, but also possibly establishing a dis-
tance measure between alternative variants. Though generally
slower than testing, the use of memoization and caching might
make our technique “fast enough” for these applications, while
providing richer information.
Improving fault localization techniques. Quantifying the
impact of each part of the program on the occurrence of a
failure can be a driver for new fault localization and primary
cause analysis techniques. This approach can indeed provide
more comprehensive information by counting the number of
successful or failing tests in a predefined test suite.
Side-effects of local refactoring. When improving a part of
the codebase, e.g., the implementation of a function, the global
probability of failure should decrease. If this does not occur,
the change is producing side effects on the program, which are
ultimately reducing its probability of satisfying a requirement.
The quantification of the global impact of a local change might
provide a useful feedback to the developers while operating on
a complex codebase.
Decision support for design choices. The precise quantifi-
cation of the probability of satisfying relevant properties can
be used to assess different design alternatives with comparable
quality figures supporting design and coding choices.
Speeding up statistical symbolic execution. Memoization and
caching for quantitative analysis can be beneficial to statistical
symbolic execution approaches, where the symbolic execution
tree is incrementally explored while collecting sample sym-
bolic execution paths [10].

V. Experience
In this section we report on our preliminary experience on

three potential applications of our technique: ranking of pro-



gram repairs, incremental reliability analysis, and regression
analysis of probabilistic programs. We have implemented our
techniques in Symbolic PathFinder. We use Latte [7] for model
counting over symbolic constraints.

A. Ranking Program Repairs
Consider the program in Figure 4. It is a code excerpt

taken from TCAS, traffic collision avoidance systems [tcas].
This example is taken from [19] which demonstrates how
the symbolic execution-based tool SemFix performs automatic
repair.

1 int is upward preffered(int inhibit, int up sep,
2 int down sep) {
3 int bias;
4 int return val;
5 if(inhibit>0) {
6 bias = down sep; // bug
7 inhibit=1;
8 }

9 else {
10 bias = up sep;
11 inhibit=0;
12 }

13 if (bias > down sep) {
14 return val=1;
15 assert(bias<=up sep+100);
16 }

17 else {
18 return val=0;
19 assert(inhibit*100+up sep<=down sep);
20 }

21 return return val;
22 }

Fig. 4. Example code repair [19]

The intended behavior of the program is captured by the
two assertions in the code, which are both violated for this
example. The suspicious program statement that leads to error
is on line 6 (see [19]) and suppose we have several available
repairs for replacing line 6 with the following:
fix 1: bias=up_sep +300
fix 2: bias=up_sep +200
fix 3: bias=up_sep +100

These repairs can be created automatically with a tool like
SemFix or are perhaps created manually by the developer. We
can use our tool to rank the three bug fixes according to the
likelihood of reaching error states. It turns out that for the 3
proposed fixes the assertions are still violated (SemFix only
proposes fixes with respect to a set of test cases). In turn our
tool reports the following “success” probabilities:
v0: 0.5033084513703282
v1: 0.5033344925054741
v2: 0.5033347658476457
v3: 0.5033350406475255

v0 is the original buggy version; v1, v2, and v3 represent the
three versions using fixes 1, 2, and 3, respectively. Thus v3>
v2>v1>v0 according to the probability of program termination
without failure. One can then argue that fix 3 is better than
the other two fixes since it corrects more program behaviors,
so it should be favored.

Furthermore, tools like SemFix address only one bug at a
time, thus there is no guarantee a fix for a second bug will
not compromise the effectiveness of the fix for the first bug.
On the other hand, our technique computes the probability of

a successful execution for all the admissible behaviors at the
same time, thus encompassing the effects of all the bugs.

B. Incremental Reliability Analysis
To illustrate the effectiveness of our reuse strategies, we

report on the incremental reliability analysis of a larger pro-
gram, MER [20], which models a component of the flight
software for JPL’s Mars Exploration Rovers (MER); it consists
of a resource: arbiter and two user components competing for
five resources. MER has 4697 LOC (including the Polyglot
framework). The software has an error (see [20]) and is driven
by input test sequences. We analyze two versions: MER (small)
for sequence length 8 and MER (large) for sequence length
20; the latter significantly stresses the tool due to the large
amount of memory required to store its symbolic execution tree
(>8Gb). For each of MER (small) and MER (large), we created
another version by introducing a change to a randomly selected
method in the program. We ran the initial run of Memoise to
build the trie for the original version, and then re-use it for
analyzing the changed version.

TABLE I. Incremental Reliability Analysis Results

Subjects Techniques Time (hh:mm:ss) #States #Solver Calls

MER (small) regular 00:00:12 212 366
incremental 00:00:20 94 144

MER (large) regular 01:24:35 400,240 813,454
incremental 00:00:34 6 0

Table I shows the results of applying both incremental
analysis and regular analysis on the changed version (i.e., re-
analyzing the program from scratch). For both regular analysis
and incremental analysis, we report the time cost, the number
of states explored, and the number of constraint solver calls
involved in the analysis. We find that for MER (small),
although incremental analysis reduced the number of states
explored and the number of constraint solver calls, it cost 8
seconds more time due to the incremental analysis overhead;
however, for MER (large), the savings in terms of time, number
of states and constraint solving calls achieved by incremental
analysis are significant because the change has little impact on
the analysis that was done on the original program version.

C. Regression Analysis for Probabilistic Programs
Another application for our tool is regression analysis for

probabilistic programs. Probabilistic programs are usual pro-
grams with two added constructs: (1) the ability to draw values
at random from distributions, and (2) the ability to condition
values of variables in a program via observations [21]. Models
from diverse application areas such as computer vision, coding
theory, cryptographic protocols, biology, and reliability analy-
sis can be written as probabilistic programs. Our probabilistic
framework allows a natural representation of such programs,
where the probabilistic inference for probabilistic programs
corresponds to computing probabilities of failure or success in
our setting. For example, Figure 5 illustrates the encoding of
the Bayesian network from [21].

The Bayesian network is composed by two nodes. The
probabilistic choice within a node is formalized via the vari-
ables BernoulliN, each one simulating the flipping of a coin
with rational bias. For example Bernoulli5<10 has 9/100
probability of returning true (1..100 being the domain of
Bernoulli5). The probability of successful execution of the
first version (in Figure 5) is 0.37197435, corresponding to



1 // all inputs range 1..100
2 void bayesN(int Bernoulli1, int Bernoulli2,
3 int Bernoulli3, int Bernoulli4, int Bernoulli5,
4 int Bernoulli6, int Bernoulli7, int Bernoulli8,
5 int Bernoulli9, int Bernoulli10) {
6 boolean i,d,s,l,g;
7 i = Bernoulli1<30? true : false;
8 d = Bernoulli2<40? true : false;
9 if(!i && !d)
10 g = Bernoulli3<70? true : false;
11 else if (!i && d)
12 g = Bernoulli4<95? true : false;
13 else if (i && !d)
14 g = Bernoulli5<10? true : false;
15 else
16 g = Bernoulli6<50? true : false;
17 assert(g); // instead of observe
18 if(!i)
19 s = Bernoulli7<5? true : false;
20 else
21 s = Bernoulli8<80? true : false;
22 if (!g)
23 l = Bernoulli9<10 ? true : false;
24 else
25 l = Bernoulli10<60 ? true : false;
26 assert(l); // probability of success gives the
27 // conditional probability P(L|G)
28 }

Fig. 5. Example Bayesian network

the conditional probability of the event L conditioned to the
occurrence of the event G. The symbolic execution tree is
composed by 39 nodes and required 3 seconds for its analysis.
The first version is then refined by modifying the first node
of the Bayesian network by replacing the condition on line 14
with Bernoulli5<80. Reanalyzing the network regressively
only required 13 nodes to be analyzed in 2 seconds, updating
the computed probability to 0.44503405.

VI. RelatedWork
Techniques that characterize syntactic program changes,

e.g., diff, are imprecise leading to unnecessary maintenance
efforts. More promising techniques produce a behavioral char-
acterization of program changes, see e.g. [1, 2]. Behaviors are
either abstracted through operational models (e.g., transition
systems) or summarized through a set of logical formulae
satisfied by the input-output relation (e.g., pre- and post- con-
ditions). Checking the implication or the equivalence between
the abstraction of different program versions provides a qualita-
tive assessment of the preservation of desired behaviors or the
elimination of undesired behaviors. These techniques provide
only true-false answers. Recent work [3, 4] provides more
informative but still only qualitative representation of program
differences. In contrast, we have presented a complementary
quantitative analysis of software changes that provides more
information about the difference between program versions.

Our quantitative measures are different from simulation
distances [22] which are real-valued functions between two
high-level models (a specification and an implementation),
computed using quantitative simulation games. Indeed, we fo-
cus on different versions of the same system, analyzing directly
code (not high-level models), using probabilistic techniques.

We have presented the high-level ideas of this work in
a one-page abstract at SNAPL’15 (snapl.org/2015, with no
formal proceedings for the abstracts) with the goal of getting
early feedback. In this paper we have developed the ideas

further, we have also provided an implementation in Symbolic
PathFinder and initial experimental results.

VII. Conclusions
We presented a technique for the quantification of software

changes that uses symbolic execution and model counting
to quantify precisely the difference between two program
versions. We have implemented the analysis in Symbolic
PathFinder, a symbolic execution tool for Java bytecode.
We further used memoized symbolic execution and caching
mechanisms for efficient reuse of results across versions. The
computed quantitative information can be used in many main-
tenance and analysis scenarios, such as: evaluation of program
repairs, refactoring (where we expect the probability of success
to not decrease), probabilistic programming, search-based soft-
ware engineering, fault localization, as well as providing new
quantitative testing coverage criteria for evaluating and opti-
mizing test suites. We plan to explore these directions further
in future research as well as improving our implementation
including more quantification procedures (floating point [8],
strings, and data structures [6]), approximate counting [10],
multithreading [9], and parallel symbolic execution to improve
the scalability of our approach.

References
[1] S. Person, M. B. Dwyer, S. G. Elbaum, and C. S. Pasareanu. “Differ-

ential symbolic execution”. In: FSE ’08. ACM, 2008, pp. 226–237.
[2] G. Yang, S. Person, N. Rungta, and S. Khurshid. “Directed Incremental

Symbolic Execution”. In: ACM Transactions on Software Engineering
and Methodology 24.1 (2014), 3:1–3:42.

[3] N. Partush and E. Yahav. “Abstract Semantic Differencing for Nu-
merical Programs”. In: vol. LNCS 7935. SAS ’13. Springer, 2013,
pp. 238–258.

[4] N. Partush and E. Yahav. “Abstract semantic differencing via specula-
tive correlation”. In: OOPSLA ’14. ACM, 2014, pp. 811–828.

[5] J. Geldenhuys, M. B. Dwyer, and W. Visser. “Probabilistic Symbolic
Execution”. In: ISSTA ’12. ACM, 2012, pp. 166–176.

[6] A. Filieri, C. S. Păsăreanu, and W. Visser. “Reliability Analysis in
Symbolic Pathfinder”. In: ICSE ’13. IEEE Press, 2013, pp. 622–631.

[7] J. A. De Loera, R. Hemmecke, J. Tauzer, and R. Yoshida. “Effective
lattice point counting in rational convex polytopes”. In: Journal of
Symbolic Computation 38.4 (Oct. 2004), pp. 1273–1302.

[8] M. Borges, A. Filieri, M. d’Amorim, C. S. Păsăreanu, and W. Visser.
“Compositional Solution Space Quantification for Probabilistic Soft-
ware Analysis”. In: PLDI ’14. ACM, 2014, pp. 123–132.

[9] K. Luckow, C. S. Păsăreanu, M. Dwyer, A. Filieri, and W. Visser.
“Exact and Approximate Probabilistic Symbolic Execution for Nonde-
terministic Programs”. In: ASE ’14. ACM, 2014, pp. 575–586.

[10] A. Filieri, C. S. Păsăreanu, W. Visser, and J. Geldenhuys. “Statistical
Symbolic Execution with Informed Sampling”. In: FSE ’14. ACM,
2014, pp. 437–448.

[11] G. Yang, C. S. Păsăreanu, and S. Khurshid. “Memoized Symbolic
Execution”. In: ISSTA ’12. Minneapolis, MN, USA: ACM, 2012,
pp. 144–154.

[12] C. S. Păsăreanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz, and
N. Rungta. “Symbolic PathFinder: integrating symbolic execution with
model checking for Java bytecode analysis”. In: Automated Software
Engineering 20.3 (2013), pp. 391–425.

[13] J. C. King. “Symbolic Execution and Program Testing”. In: Commun.
ACM 19.7 (July 1976), pp. 385–394.

[14] P. Zuliani, A. Platzer, and E. Clarke. “Bayesian statistical model check-
ing with application to Stateflow/Simulink verification”. In: Formal
Methods in System Design 43.2 (2013), pp. 338–367.

[15] C. Boyapati, S. Khurshid, and D. Marinov. “Korat: Automated Testing
Based on Java Predicates”. In: SIGSOFT Software Engineering Notes
27.4 (July 2002), pp. 123–133.

[16] W. Pestman. Mathematical Statistics. De Gruyter Textbook. De
Gruyter, 2009.

[17] E. Fredkin. “Trie memory”. In: Communications of the ACM 3 (9
1960), pp. 490–499.

http://snapl.org/2015


[18] D. E. Willard. “New trie data structures which support very fast search
operations”. In: Journal of Computer and System Sciences 28 (3 1984),
pp. 379–394.

[19] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. “SemFix:
Program Repair via Semantic Analysis”. In: ICSE ’13. San Francisco,
CA, USA: IEEE Press, 2013, pp. 772–781.

[20] D. Balasubramanian, C. S. Psreanu, G. Karsai, and M. R. Lowry.
“Polyglot: Systematic Analysis for Multiple Statechart Formalisms”.
In: vol. LNCS 7795. TACAS ’13. Springer, 2013, pp. 523–529.

[21] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani. “Prob-
abilistic Programming”. In: FOSE 2014. ACM, 2014, pp. 167–181.

[22] P. Cerný, T. A. Henzinger, and A. Radhakrishna. “Simulation Dis-
tances”. In: vol. LNCS 6269. CONCUR ’10. Springer, 2010, pp. 253–
268.


	Introduction
	Background on Symbolic Execution
	Example
	The Approach
	Probabilistic Analysis
	Incremental Analysis
	Potential application

	Experience
	Ranking Program Repairs
	Incremental Reliability Analysis
	Regression Analysis for Probabilistic Programs

	Related Work
	Conclusions

